INTRODUCTION TO WEBB’S DEPTH-OF-KNOWLEDGE LEVELS

Mathematics Depth-of-Knowledge Levels

Level 1 (Recall) includes the recall of information such as a fact, definition, term, or a simple procedure, as well as performing a simple algorithm or applying a formula. That is, in mathematics a one-step, well-defined, and straight algorithmic procedure should be included at this lowest level. Other key words that signify a Level 1 include “identify,” “recall,” “recognize,” “use,” and “measure.” Verbs such as “describe” and “explain” could be classified at different levels depending on what is to be described and explained.

Level 2 (Skill/Concept) includes the engagement of some mental processing beyond a habitual response. A Level 2 assessment item requires students to make some decisions as to how to approach the problem or activity, whereas Level 1 requires students to demonstrate a rote response, perform a well-known algorithm, follow a set procedure (like a recipe), or perform a clearly defined series of steps. Keywords that generally distinguish a Level 2 item include “classify,” “organize,” “estimate,” “make observations,” “collect and display data,” and “compare data.” These actions imply more than one step. For example, to compare data requires first identifying characteristics of the objects or phenomenon and then grouping or ordering the objects. Some action verbs, such as “explain,” “describe,” or “interpret” could be classified at different levels depending on the object of the action. For example, if an item required students to explain how light affects mass by indicating there is a relationship between light and heat, this is considered a Level 2. Interpreting information from a simple graph, requiring reading information from the graph, also is a Level 2. Interpreting information from a complex graph that requires some decisions on what features of the graph need to be considered and how information from the graph can be aggregated is a Level 3. Caution is warranted in interpreting Level 2 as only skills because some reviewers will interpret skills very narrowly, as primarily numerical skills, and such interpretation excludes from this level other skills such as visualization skills and probability skills, which may be more complex simply because they are less common. Other Level 2 activities include explaining the purpose and use of experimental procedures; carrying out experimental procedures; making observations and collecting data; classifying, organizing, and comparing data; and organizing and displaying data in tables, graphs, and charts.

Level 3 (Strategic Thinking) requires reasoning, planning, using evidence, and a higher level of thinking than the previous two levels. In most instances, requiring students to explain their thinking is a Level 3. Activities that require students to make conjectures are also at this level. The cognitive demands at Level 3 are complex and abstract. The complexity does not result from the fact that there are multiple answers, a possibility for both Levels 1 and 2, but because the task requires more demanding reasoning. An activity, however, that has more than one possible answer and requires students to justify the response they give would most likely be a Level 3. Other Level 3 activities include drawing conclusions from observations; citing evidence and developing a logical argument for concepts; explaining phenomena in terms of concepts; and using concepts to solve problems.
Level 4 (Extended Thinking) requires complex reasoning, planning, developing, and thinking most likely over an extended period of time. The extended time period is not a distinguishing factor if the required work is only repetitive and does not require applying significant conceptual understanding and higher-order thinking. For example, if a student has to take the water temperature from a river each day for a month and then construct a graph, this would be classified as a Level 2. However, if the student is to conduct a river study that requires taking into consideration a number of variables, this would be a Level 4. At Level 4, the cognitive demands of the task should be high and the work should be very complex. Students should be required to make several connections—relate ideas within the content area or among content areas—and have to select one approach among many alternatives on how the situation should be solved, in order to be at this highest level. Level 4 activities include designing and conducting experiments; making connections between a finding and related concepts and phenomena; combining and synthesizing ideas into new concepts; and critiquing experimental designs.

The following pages look at the relationship between:

- Bloom’s Taxonomy
- Marzano’s Dimensions of Thinking
- Webb’s Depth of Knowledge Levels
Bloom Taxonomy

Knowledge Recall of specifics and generalizations; of methods and processes; and of pattern, structure, or setting.

Comprehension Knows what is being communicated and can use the material or idea without necessarily relating it.

Applications Use of abstractions in particular and concrete situations.

Analysis Make clear the relative hierarchy of ideas in a body of material or to make explicit the relations among the ideas or both.

Synthesis Assemble parts into a whole.

Evaluation Judgments about the value of material and methods used for particular purposes.
Marzano’s Dimension of Thinking (Wisconsin DPI) (1989)

- Gathering Information
 Observe, recall, question

- Organizing Information
 Represent, compare, classify, order

- Analyzing Information
 Attributes and components, patterns and relationships, main points, accuracy and adequacy

- Generating Information
 Infer, predict, elaborate

- Integrating Information
 Summarize, restructure

- Evaluating Information
 Establish criteria, verify
Depth of Knowledge (1997)

Level 1 Recall
Recall of a fact, information, or procedure.

Level 2 Skill/Concept
Use information or conceptual knowledge, two or more steps, etc.

Level 3 Strategic Thinking
Requires reasoning, developing plan or a sequence of steps, some complexity, more than one possible answer.

Level 4 Extended Thinking
Requires an investigation, time to think and process multiple conditions of the problem.
Survey of Enacted Curriculum Mathematics Cognitive Levels

- Memorize
 Recall basic mathematics facts; etc.

- Perform procedures
 Do computational procedures or algorithms; etc.

- Demonstrate understanding
 Communicate mathematical ideas; use representations to model mathematical ideas; etc.

- Conjecture, generalize, prove
 Determine the truth of a mathematical pattern or proposition; write formal or informal proof; etc.

- Solve non-routine problems, make connections
 Apply and adapt a variety of appropriate strategies to solve problems; etc.
Depth of Knowledge

I: Recall

Depth I includes the recall of information such as fact, definition, term, or a simple procedure, as well as performance of a list of known steps or application of a formula. This depth merely requires that students demonstrate a rote response, perform a well-known algorithm, follow a set procedure (like a recipe), or perform a clearly defined series of steps.

Key words that signify **Depth I** include identify, recall, recognize, use, and measure. Verbs such as describe and explain could be classified at different levels, depending upon what is to be described and explained.

Examples of Depth I:
- a. Which set of numbers is not a Pythagorean triple?
 - A. 5, 12, 13
 - B. 3, 4, 5
 - C. 4, 6, 10
 - D. 9, 40, 41
- b. What is the place value of 9 in the number 74,295?
 - A. hundreds
 - B. tenths
 - C. hundredths
 - D. thousandths
- c. The word that names the relationship between the angles in a linear pair is __________.
- d. T-F When the determinant formed by the coefficients in a system of linear equations equals zero, the system is inconsistent.

II: Skill/Concept

Depth II includes the engagement of mental processing beyond a habitual response. A Depth II assessment item requires students to make some decisions as to how to approach the problem or the activity. Depth II activities are not limited to routinely practiced skills; they may involve additional visualization skills, probability skills, etc. The actions required at this depth imply more than one step (e.g., comparing data requires first identifying characteristics of objects or phenomena and then grouping or ordering the objects).

Keywords that generally distinguish a **Depth II** item include classify, organize, estimate, collect and display data, make observations, and compare data. Some action verbs, such as explain, describe or interpret could be classified at different levels depending upon the object of the action.

Examples of Depth II:
- a. All of the terms in the list to the right depict __________.
 - A. isometries
 - B. transformations
 - C. symmetries
 - D. similarity
- b. The graph shows the number of envelopes Jo addressed as a function of time. Find her rate.
 - A. one envelope per minute
 - B. two envelopes per minute
 - C. two envelopes per three minutes
 - D. three envelopes per two minutes

III: Strategic Thinking

Depth III requires reasoning, planning, using evidence, and a higher level of thinking than the previous two depths. In most instances, requiring students to explain their thinking is at **Depth III** as are activities that require students to make conjectures. The complexity does not result from the fact that there are multiple answers; however, an activity that has more than one possible answer and requires students to justify the response they give would most likely be **Depth III**.

Keywords that signify **Depth III** draw a conclusion, make a generalization, support with an argument, cite evidence, explain phenomena in terms of concepts; determine which concept applies and then apply it; solve a complex or non-routine problem.

Examples of Depth III:
- a. Using exactly five 3's and mathematical symbols, write expressions for all of the whole numbers from 1 to 20, inclusive. Include the simplification that leads to the appropriate integer as well as the number properties being applied in the simplification process.
- b. The area of the triangle with vertices at the points (1,4), (6,9), (8,1) is 25 square units. Find as many different ways to get this area as you can. Explain each method in a clear and concise manner using terminology correctly. Show all work including diagrams, theorems/formulas, and equations with solutions so that the reader can follow the method used.

IV: Extended Thinking

Depth IV requires complex reasoning, planning, developing and thinking, most likely over an extended period of time. Extensive time periods are not a distinguishing factor if the required work is only repetitive and doesn’t require applying significant conceptual understanding and higher-order thinking. The cognitive demands of the task should be high and the work complex; students should be required to make connections (within or among content areas) and have to select one approach among many alternatives.

Keywords that signify **Depth IV** design and conduct the experiment; develop and carry out the project; create and prove conjectures; make connections between discoveries and related concepts/phenomena; combine and synthesize ideas into new concepts; critique plans and designs.

Examples of Depth IV:
- a. The graph charts annual precipitation in Franklin, TN. Determine an approximate total number of inches of precipitation for Franklin for 1 year using this graph. Include the work that supports that this is a good estimate of the annual total inches of precipitation and explain.
- b. George Smith charges $4.00 an hour for his services to walk/feed/water outdoor pets when his clients take weekend trips. Charles Wood charges $45.00 for weekly lawn care - mowing, weeding, raking. Marty Rogers cleans and organizes items in sheds/garages at the rate of $6.50 per hour. If each of these boys’ families needs the services of the other two boys, determine a fair way (as fair as is possible) to arrange for services to be rendered among the three families without the exchange of money.
Table 1: Applying Webb’s Depth of Knowledge Levels for Mathematics
(Adapted from Karin Hess, Center for Assessment/NCIEA by the Kentucky Department of Education, 2005)

<table>
<thead>
<tr>
<th>Webb’s DOK Levels</th>
<th>Skills and Concepts/ Basic Reasoning (DOK 2)</th>
<th>Strategic Thinking/ Complex Reasoning (DOK 3)</th>
<th>Extended Thinking/ Reasoning (DOK 4)</th>
</tr>
</thead>
</table>
| Recall and Reproduction (DOK 1) | • Students make some decisions as to how to approach the problem
• Skill/Concept
• Basic Application of a skill or concept
• Classify
• Organize
• Estimate
• Make observations
• Collect and display data
• Compare data
• Imply more than one step
• Visualization Skills
• Probability Skills
• Explain purpose and use of experimental procedures
• Carry out experimental procedures | • Requires reasoning, planning using evidence and a higher level of thinking
• Strategic Thinking
• Freedom to make choices
• Explain your thinking
• Make conjectures
• Cognitive demands are complex and abstract
• Conjecture, plan, abstract, explain
• Justify
• Draw conclusions from observations
• Cite evidence and develop logical arguments for concepts
• Explain phenomena in terms of concepts | • Performance tasks
• Authentic writing
• Project-based assessment
• Complex, reasoning, planning, developing and thinking
• Cognitive demands of the tasks are high
• Work is very complex
• Students make connections within the content area or among content areas
• Select one approach among alternatives
• Design and conduct experiments
• Relate findings to concepts and phenomena |
| | • Habitual response: Can be described; Can be explained
• Answer item automatically
• Use a routine method
• Recognize patterns
• Retrieve information from a graph
• Includes one step word problems
• Do basic computations | • Make observations and collect data
• Beyond habitual response
• Classify, organize and compare data
• Explain, describe or interpret
• Organize and display data in tables, charts and graphs
• Use of information
• Two or more steps, procedures
• Demonstrate conceptual knowledge through models and explanations
• Extend a pattern
• Explain concepts, relationships, and non-samples. | • Combine and synthesize ideas into new concepts
• Critique experimental designs |

Tennessee 3–5 Grade Band Training
Depth of Knowledge (DOK) Levels

<table>
<thead>
<tr>
<th>Level One Activities</th>
<th>Level Two Activities</th>
<th>Level Three Activities</th>
<th>Level Four Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall elements and details of story structure, such as sequence of events, character, plot and setting.</td>
<td>Identify and summarize the major events in a narrative.</td>
<td>Support ideas with details and examples.</td>
<td>Conduct a project that requires specifying a problem, designing and conducting an experiment, analyzing its data, and reporting results/solutions.</td>
</tr>
<tr>
<td>Conduct basic mathematical calculations.</td>
<td>Use context cues to identify the meaning of unfamiliar words.</td>
<td>Use voice appropriate to the purpose and audience.</td>
<td>Apply mathematical model to illustrate a problem or situation.</td>
</tr>
<tr>
<td>Label locations on a map.</td>
<td>Solve multiple-step problems.</td>
<td>Identify research questions and design investigations for a scientific problem.</td>
<td>Analyze and synthesize information from multiple sources.</td>
</tr>
<tr>
<td>Represent in words or diagrams a scientific concept or relationship.</td>
<td>Describe the cause/effect of a particular event.</td>
<td>Develop a scientific model for a complex situation.</td>
<td>Describe and illustrate how common themes are found across texts from different cultures.</td>
</tr>
<tr>
<td>Perform routine procedures like measuring length or using punctuation marks correctly.</td>
<td>Identify patterns in events or behavior.</td>
<td>Determine the author’s purpose and describe how it affects the interpretation of a reading selection.</td>
<td>Design a mathematical model to inform and solve a practical or abstract situation.</td>
</tr>
<tr>
<td>Describe the features of a place or people.</td>
<td>Formulate a routine problem given data and conditions.</td>
<td>Apply a concept in other contexts.</td>
<td></td>
</tr>
</tbody>
</table>

[https://www.assessment.org/ Assessment.org](https://www.assessment.org)